DIE KONSTITUTION DER VALEPOTRIATE*

MITTEILUNG ÜBER DIE WIRKSTOFFE DES BALDRIANS¹

P. W. THIES

Pharmazeutisch-Wissenschaftliche Laboratorien der Kali-Chemie Aktiengesellschaft, Hannover, Deutschland

(Received in Germany 31 March 1967; accepted for publication 17 April 1967)

Zusammenfassung—In der vorliegenden Arbeit wird für Valepotriatum¹ (Valtratum²) die Struktur 1, für Acetoxyvalepotriatum¹ (Acevaltratum²) die Struktur 10, für Dihydrovalepotriatum¹ (Didrovaltratum²) die Struktur 16 und für Baldrinal¹ die Struktur 2 bewiesen. Die Strukturen weiterer aus *Valeriana Wallichii* D.C. isolierter Valepotriate^{*} werden ebenfalls mitgeteilt 6, 14, 15, 17.

Abstract—In the present paper the structure 1 for valepotriatum¹ (valtrate²), the structure 10 for acetoxy-valepotriatum¹ (acevaltrate²), the structure 16 for dihydrovalepotriatum¹ (didrovaltrate²) and the structure 2 for baldrinal¹ are proved. The structures 6, 14, 15 and 17 of additional valepotriates, isolated from *Valeriana wallichii* D.C., are included.

A. Vorkommen der Valepotriate in Pflanzen aus der Familie der Valerianaceae

DER Isovaleriansäureester Valtratum² (1) kommt in Wurzeln und Rhizomen von Valeriana officinalis, V. Wallichii D.C., in arzneilich verwendeten Valeriana- bzw. Kentranthus-Arten von Mexiko und Lateinamerika sowie in Kentranthus ruber D.C. vor. In arzneilich nicht verwendeten Valeriana-Arten kann 1 oft gar nicht oder nur in Spuren nachgewiesen werden, während der Durchschnittsgehalt an 1 in frisch geernteten und bei 40° getrockneten Drogen von V. officinalis bei 0.5%, von V. wallichii D.C. indischer Provenienz sowie in Kentranthus ruber D.C. bei 2% liegt. In einer aus Mexiko stammenden und als V. mexicana (Valeriana-oder Kentranthus-Art?) gehandelten Droge, die aus fingerdicken Rhizomen bestand, konnten wir ca. 5% 1 nachweisen. Frische Rhizome der in Equador gehandelten Ware enthielten ca. 3% 1, alles bezogen auf Trockengehalt. Durch die nun gesicherten Strukturformeln der Valepotriate wird die kürzlich auch von Hegenauer³ erwogene Möglichkeit, dass die "Polyester" des Baldrians evtl. zu den iridoiden Körpern gehören, insoweit bestätigt, als den korrespondierenden, nicht beständigen Alkoholen der Valepotriate formal das Monoterpenskelett des Iridodials zugrunde gelegt werden kann. Die

• Die Einführung des Sammelbegriffs "Valepotriate" für die genuinen Baldrianwirkstoffe erscheint gerechtfertigt, da es sich hierbei sicher um eine neue Klasse von Naturstoffen handelt.

Valepotriate unterscheiden sich jedoch vom Bauprinzip bisher bekannter, stickstoffreier, aber sauerstoffreicher iridoider Pflanzenstoffe durch folgende Merkmale:

- (1) Sie sind keine Glykoside oder Laktone, sondern Ester.
- (2) Die Lage der Doppelbindungen und Sauerstoffunktionen am C_{10} -Baustein ist anders als in bisher bekannten iridoiden Pflanzenstoffen.
- (3) Die Dientypen der Valepotriate gehen sehr leicht in die entsprechend substituierten Pseudoazulene vom Typ des Cyclopenta[c]pyrans

über.

Durch regelmässige DS-chromatographische Untersuchungen an Wild- und Kulturpflanzen von V. wallichii D.C. über einen Zeitraum von 2 Jahren fanden wir, dass 1 der erste in den Wurzelspitzen der Pflanze gut nachweisbare Ester der Gruppe der Valepotriate ist. Wir konnten weiterhin im Zuge dieser Untersuchungen beweisen, dass es innerhalb der V. wallichii D.C. zwei chemische Rassen gibt, die sich sehr eindrucksvoll unter anderem dadurch unterscheiden, dass die eine auf Kosten von Valtratum, Didrovaltratum und seine Seitenkettenhomologen kumuliert und die andere das Diengerüst beibehaltend eine Isovaleriansäure- bzw. Isocapronsäurekomponente durch sauerstoffreichere, wie beispielsweise durch β -Acetoxyisovaleriansäure austauscht, was zur Kumulierung des kristallisierbaren Acevaltratum (10) führt.

Biochemisch von Interesse dürfte auch sein, dass wir die "Desoxidodidrovaltrate" (14 und 15) aus der Pflanze isolieren konnten. Die Isolierung des möglichen "Desoxidovaltratum" ist uns bisher nicht gelungen.

B. Die Sekundärprodukte der Valepotriate

Das zweifellos interessanteste Sekundärprodukt der Valepotriate ist Baldrinal (2). Es kann sich in der Droge und in Tinkturen aus 1 oder 10 bilden. Der Abbau ist sauer und thermisch katalysiert. Es entstehen neben 2 aus 1 oder 10 noch weitere "Eliminierungsprodukte", deren Reindarstellung uns bisher nicht gelang.

Verbindung 2 ist unseres Wissens nach das erste in der Natur gefundene Cyclopenta[c]pyran und gleichzeitig das erste Pseudoazulen der Terpenreihe.

Während Anderson *et al.*⁴ 1959 das unsubstituierte Cyclopenta[c]thiapyran synthetisieren konnten, scheint die Synthese des unsubstituierten Sauerstoffanalogons noch nicht verifiziert worden zu sein. Eine zweite Gruppe von Sekundärprodukten entsteht nicht durch Eliminierung, sondern durch Addition von Säuren an den Epoxidring. Die Verbindung 6 konnten wir beispielsweise aus einer V. wallichii D.C. nepalesischer Provenienz isolieren, während wir die Verbindung 26 durch gelindes Erwärmen einer methanolischen Lösung von 16 in Gegenwart von NH₃ herstellen konnten.

Neben diesen Sekundärprodukten lassen sich, insbesondere in schlecht gelagerten Drogen, auch Glykole des Typus 7 sowie Homologe von 6 bzw. 22 und 26 nachweisen. Sie entstehen formal durch Anlagerung von Wasser oder der entsprechenden Säuren an den Epoxidring.

FORMELSCHEMA I (ad Valtratum)

(ad Acevaltratum)

C. Die Konstitution von Valtratum (1)

I. Allgemeines. Das säure-, alkali- und thermolabile 1 liess sich bisher nur an mit Carbonsäuren, insbesondere mit Essigsäure, in wasserfreiem Medium behandeltem Aluminiumoxid chemisch rein darstellen.⁵ Die Reinheitskontrolle lässt sich dünnschichtchromatographisch gut durchführen.⁶ Die kryoskopische Molekulargewichtsbestimmung der farblosen Substanz in absolutem Benzol ergab einen Wert von 429. Aus den Verbrennungsdaten und dem gefundenen Molekulargewicht ergab sich für 1 die Bruttoformel $C_{22}H_{30}O_8$.

II. Funktionelle Gruppen. 1 ist ein "Polyester", da durch Hydroxylaminolyse mit Hydroxylamin in methanolischer Lösung die Hydroxamsäuren der Isovaleriansäure und der Essigsäure gebildet werden, welche papierchromatographisch einwandfrei identifiziert wurden.¹¹ Den beiden Estergruppen entsprechen im IR-Spektrum die v-C=O-Banden bei 1766 und 1740 cm⁻¹. Im C-O-Valenzbereich treten 4 starke Banden bei 1255, 1230, 1147 und 1097 cm⁻¹ auf, die von mehreren C-O-Bindungen aus Ester- und Äthergruppen herrühren.

FIG. 1. IR-Spektrum von Valtratum (1).

Im NMR-Spektrum von 1 finden sich Dublette bei $\delta = 0.97$ und $\delta = 1$, welche den Methylgruppen der beiden Isovaleroxyreste entsprechen und bei $\delta = 20$ ist das scharfe Singulett einer Acetat-Methylgruppe. Die restlichen 6 Protonen der beiden Isovaleroxygruppen erscheinen als komplexe Signalgruppe mit Zentrum bei etwa $\delta = 2.2$.

Durch Erwärmen oder Zugabe von Trichloressigsäure zu einer Chloroformlösung von 1 werden aus 1 unter Eliminierung von 2 Äquivalenten Isovaleriansäure Baldrinal 2 und andere Abbauprodukte gebildet.

Verbindung 1 ist ein *Epoxid*. Es war sofort klar, dass das Strukturproblem von 1 nur im Zusammenhang mit demjenigen von 2 relativ schnell zu lösen sei. Das Vorhandensein der Essigestergruppe in 2 war nicht weiter überraschend; das Auftreten einer Formylgruppe an einem aromatischen System (siehe weiter unten) liess jedoch auf eine zusätzliche Umlagerung des "Grundskeletts" schliessen.

Als "Vorstufe" der Aldehydgruppe in 2 wurde aufgrund theoretischer Überlegungen ein Oxiranring in 1 angenommen. Der chemische Nachweis des Epoxids gelang in Anlehnung an die Arbeiten von Swain⁷ durch die Herstellung der gut kristallisierenden Hydrine 3, 4 und 5. Besonders das stabile Jodhydrin 3 wurde nun als weitere wichtige Substanz bei der Strukturermittlung von 1 herangezogen.

FIG. 2. IR-Spektrum von Valtratumjodhydrin (3).

Im NMR-Spektrum von 1 konnte das AB Quartett bei $\delta = 2.89$ und $\delta = 3.02$ und der Kopplungskonstanten von $J_{AB} = 5$ Hz den 2 Protonen eines 1,2-disubstituierten Äthylenoxids zugeordnet werden. Die beiden Methylenprotonen erscheinen im NMR-Spektrum von 3 im tieferen Feld bei $\delta = 3.52$ und $\delta = 3.69$ mit einer Kopplungs-

konstanten von $J_{AB} = 10.5$ Hz, was mit der α -Jodhydringruppierung C(OH)CH₂-J

in Einklang steht. Das tertiäre, nicht assozierfähige Hydroxyl gibt im IR-Spektrum von 3 eine sehr scharfe Bande bei 3495 cm⁻¹.

FIG. 3. 100 MHz-Spektrum des Valtratumjodhydrin (3) in CDCl₃.

Verbindung 1 ist ein Dien. Dafür sprechen das intensive UV-Maximum bei $\lambda = 256$ mµ und im IR-Spektrum die beiden v-C=C-Schwingungen bei 1610 cm⁻¹ und 1640 cm⁻¹ sowie die schwache CH-Valenzschwingung bei 3060 cm⁻¹. Eine der beiden Doppelbindungen muss eine Enolätherdoppelbindung sein, da 1 in Methanol 1 Äquivalent Brom verbraucht, wobei zwei Paare isomerer Brom-Methoxyverbindungen vom Typ 8 und 9 gebildet werden. Im IR-Spektrum dieser "Methoxybromide" fehlen die scharfen Banden bei v = 1610 cm⁻¹ und v = 1640 cm⁻¹. In den NMR-Spektren von 1 und 3 ist noch ein zweites AB-Quartett bei $\delta = 4.62$ und 4.77 für 1 bzw. bei $\delta = 4.57$ und 4.71 für 3. Beide haben eine Kopplungskonstante von $J_{AB} = 12.5$ Hz. Im 100 MHz-Spektrum von 2 entspricht diesen AB-Quartetten ein Dublett bei $\delta = 5.2$ mit $J \cong 1$ Hz; diese Beobachtung in Verbindung mit dem im gleichen Spektrum von 2 noch vorhandenen Methylsignal der Acetatgruppe bei $\delta = 2.1$ und der v-C=O-Bande im IR-Spektrum von 2 bei 1730 cm⁻¹ gestattet den Schluss, dass in 1, 2 und 3 die Gruppierung -C=C--CH₂-O-Ac vorliegt. Zusammenfassend ergibt sich bezüglich der funktionellen Gruppen von 1 folgendes Bild:

TABELLE 1. FUNKTIONELLE GRUPPEN VON 1

III. Atomsequenz. Nach Festlegung der funktionellen Gruppen verbleiben für das 1-Skelett nur noch 5 Protonen, denen folgende Signale im NMR-Spektrum entsprechen:

Proton A:	Singulett	bei $\delta = 6.72$
Proton B:	Dublett	bei $\delta = 5.96$; $J_{BE} = 10.0$ Hz
Proton C:	Triplett	bei $\delta = 5.86$; $J_{CE} = 2.8$ Hz
Proton D:	Dublett	bei $\delta = 5.34; J_{DC} = 2.8 \text{ Hz}$
Proton E:	Quartett	bei $\delta = 3.41$; $J_{EB} = 10.0 J_{EC} = 2.8 \text{ Hz}$

Der chemischen Verschiebung entsprechend ist Proton A ein "Vinyl"-proton, welches als ein verbreitertes Signal im NMR-Spektrum von 1 und von 3 bei $\delta = 6.7$

FIG. 4. NMR-Teilspektrum von 3 in CDCl₃/D₂O. Beweis der Kopplung von Proton A mit den Protonen der Methylengruppe ---CH₂---OAc.

ppm erscheint. Diese Verbreiterung des Signals rührt von einer "long-range" Kopplung mit dem AB-Quartett der Methylengruppe mit Zentrum bei $\delta = 4.64$ her, denn beim Bestrahlen des AB-Quartetts geht das verbreiterte Signal in ein scharfes Singulett über (Fig. 4).

FIG. 5. NMR-Teilspektrum von 1 in $CDCl_3$. Beweis der Kopplungen $E \rightarrow B$, $E \rightarrow C$ und $D \rightarrow C$.

Proton E ist entsprechend seiner chemischen Verschiebung ein tertiäres Wasserstoffatom. Da beim Öffnen des Epoxidringes in 1 mit HJ zum 3 das Dublett des Protons B ins tiefere Feld nach $\delta = 6.22$ wandert, (Figs. 3 und 4) und dasselbe Proton sicher mit einer Kopplungskonstanten von $J_{BE} = 100$ Hz mit Proton E (Fig. 5) koppelt, wurde zunächst folgende Sequenz angenommen:

Da Proton C ebenfalls mit $J_{CE} = 2.8$ Hz mit Proton E koppelt, wie durch Doppelresonanz* bewiesen werden konnte, und Proton D schliesslich wiederum der zweite Kopplungspartner mit $J_{DC} = 2.8$ Hz von Proton C (Fig. 5) ist, schien folgende Sequenz gerechtfertigt:

• Herr Dr. A. Melera von der Varian A. G., Zürich/Schweiz, hat alle hier mitgeteilten Doppelresonanzexperimente durchgeführt, wofür ich ihm zu grossem Dank verpflichtet bin.

Die Kombination dieses Molekülteiles mit dem "Dienteil" führte fast zwangsläufig zu dem in der 2. Mitteilung¹ gemachten Strukturvorschlag:

Ausser dieser "Benzofuranstruktur" kommen jedoch noch zwei Cyclopentapyranstrukturen als mögliche Formeln für 1 in Betracht:

Unter der Voraussetzung, dass die Valepotriate den gleichen C_{10-} Baustein enthalten wie die Dihydrovelepotriate¹ lassen sich unter Zuhilfenahme der NMR-Spektren von 16 und 17 die Strukturen I und II praktisch ausschliessen, da bei einer Hydrierung der mit der Enolätherdoppelbindung in Konjugation stehenden Doppelbindung die ---CH₂---O- gruppe sicher nicht mehr, wie zum Beispiel in 16, ein AB-Quartett mit $\delta_A = 4.42$ und $\delta_B = 4.68$ und einer Kopplungskonstanten von $J_{AB} = 12$ Hz ergeben würde, (Fig. 14) sondern im höheren Feld entweder die Signale eines A_2X

Η

oder die eines ABX-Systems, entsprechend der
$$-C$$
 $-CH_2$ O Gruppierung.

Hieraus ergibt sich, dass für Valtratum nur noch die Strukturformel III in Frage kommt.

D. Die Konstitution von Baldrinal (2)

I. Allgemeines und funktionelle Gruppen. Das in intensiv gelb gefärbten Prismen vom F.P. = 112-113°C kristallisierende 2 hat nach Verbrennungsanalyse und Massenspektrum die Bruttoformel $C_{12}H_{10}O_4$. Verbindung 2 ist ein Essigsäureester wie sich durch Hydroxylaminolyse und papierchromatographischen Nachweis des Essigsäurehydroxamates leicht nachweisen lässt. Dem entsprechen im IR (siehe Fig. 6) die Banden bei v = 1732 und 1247 cm⁻¹ und das scharfe Signal der Acetatmethylgruppe im NMR-Spektrum bei $\delta = 2.1$ ppm; 2 ist ein α - β -ungesättigter Aldehyd mit einer sehr niedrig frequenten v-C=O-Bande bei 1637 cm⁻¹ und den Aldehyd-C-H-Valenzschwingungen bei v = 2740 und 2800 cm⁻¹; 2 gibt damit in Einklang stehend ein Dinitrophenylhydrazon, ein Semicarbazon und ein Thiosemicarbazon (Experimenteller Teil). II. Atomsequenz. In Ableitung zu den für Valtratum (1) diskutierten Strukturformeln I, II und III müssen für Baldrinal (2) die Formeln IV, V und VI erörtert werden:

Unter der Voraussetzung, dass Baldrinal das gleiche Ringgerüst wie 1 und 16 hat, können die Formeln IV und V für 2 ebenso wenig in Betracht kommen, wie die Formeln I und II für Valtratum (1). Gegen Formel IV spricht weiterhin die Kopplungskonstante $J_{CD} = 3$ Hz im NMR-Spektrum von 2, welche für eine "Ortho-Kopplung" an einem Benzolkern viel zu klein ist,^{8.9} jedoch durchaus in der Grössenordnung von an Fulvensystemen ermittelten Kopplungskonstanten liegt.¹⁰ Im Einklang mit einer "Fulvenstruktur" stehen auch die tiefgelborange Farbe sowie die UV- und IR-Spektren der Substanz 2.

FIG. 6. IR-Spektrum von Baldrinal (2) (1 mg Substanz/300 mg K Br)

Protonen	chemische V bezogen au	verschiebung of TMS = 0	Kopplungskonstanten in Hz	
Ac	Singulett bei	$\delta = 2.1 \text{ ppm}$		(C)
EE'	Dublett bei	$\delta = 5.24 \text{ ppm}$	$J_{\rm FA} \cong 1.0 {\rm Hz}$	H H(D)
D	Quartett bei	$\delta = 6.56 \text{ ppm}$ $\delta = 6.59 \text{ ppm}$	$J_{DC} = 3.0 \text{ Hz}$ $J_{DR} = 0.7 \text{ Hz}$	H ^(F) (EE') CH,OAC
С	Dublett bei	$\delta = 7.82 \text{ ppm}$	$J_{\rm CD} = 3.0 \text{Hz}$	й III Г
Α	Dublett bei	$\delta = 7.86 \text{ ppm}$	$J_{AB} \cong 1.0 \text{Hz}$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$
В	Dublett bei	$\delta = 9.14 \text{ ppm}$	$J_{BD} = 0.7 \text{ Hz}$	(B) = (A)
F	Singulett bei	$\delta = 9.91 \text{ ppm}$		

TABELLE 2. δ -Werte und Kopplungskonstanten von 2, gemessen in CDCl₃

Diese Daten sprechen eindeutig für die Struktur IV, wobei insbesondere die durch Doppelresonanz bewiesenen "long-range"-Kopplungen zwischen Proton A und der Methylengruppe und diejenige zwischen den Protonen B und D hervorzuheben sind.

FIG. 7. NMR-Teilspektrum von Baldrinal (2) in $CDCl_3$. Beweis der Kopplungen $EE' \rightarrow A$ und $D \rightarrow B$.

Das Pseudoazulen (2) vermag mit Säuren wasserlösliche Salze zu geben, die oft nach längerem Stehen eine blau-grüne Farbe annehmen. Aus diesem Grunde war es interessant, ein NMR-Spektrum in Trifluoressigsäure aufzunehmen. Obwohl mit dieser Säure nur eine leichte grünliche Färbung zur Zeit der Messung zu erkennen war, ist die Tatsache bemerkenswert, dass gegenüber der Messung in CDCl₃ das Signal des Aldehydprotons von $\delta = 9.91$ ins höhere Feld nach $\delta = 9.58$ als auch das Signal des Protons B von $\delta = 9.14$ nach $\delta = 9.0$ wanderte, während die übrigen Signale alle eine höhere chemische Verschiebung aufweisen als im CDCl₃-Spektrum. Am auffallendsten ist die Zunahme der chemischen Verschiebung von Proton A gegenüber der Abnahme derjenigen von Proton B.

Bez.	δ -Werte in CDCl ₃	δ -Werte in CF ₃ COOH	Differenz der δ -Werte
Ac	2.1	2.28	+ 0.18
EE'	5.24	5.57	+ 0.33
D	6.56	7.28	+ 0.72
	6.59	7.31	
С	7.82	8.37	+ 0.55
Α	7.86	8.75	+ 0.89
В	9.14	9.00	- 0.14
F	9.91	9.58	- 0.33

TABELLE 3. δ-WERTE VON BALDRINAL IN TRIFLUORESSIGSÄURE

Man kann dies vielleicht so interpretieren, dass die Protonisierung am Aldehydsauerstoff stattfindet und dadurch die durch die Acetoxymethylgruppe bedingte grössere Abschirmung des Protons A gegenüber der des Protons B zu Gunsten einer symmetrischen Ladungsverteilung an den beiden α -C-Atomen im Pyranring aufgehoben wird. Für die Protonisierung am Aldehydcarbonyl spricht auch die Wanderung des Protons F von 9.91 nach = 9.58 ppm.

E. Das Massenspektrum von Baldrinal (2)*

Im Massenspektrum von 2 hat der Molekülionenpeak $P^+ = 218$ die grösste Intensität, weshalb er als Basispeak gewählt wurde (= 100%). Für die Essigestergruppierung Ar---CH₂--O---COMe beweisend sind der mit einer relativen Intensität von 85% auftretende Peak des Acetylkations bei m/e = 43 zusammen mit den Ionen P - 42 bei m/e = 176 (70) und P - 43 bei m/e = 175 (23) im Verein mit dem von der Keten-Abspaltung herrührenden metastabilen Ion m* = 142 und den Bruchstücken m/e = 159 (12) und m/e = 158.

Ein Beweis für das Vorliegen einer Formylgruppe in 2 kann aus dem Massenspektrum nicht ohne weiteres entnommen werden, da die Eliminierung von $|C=O\rangle$ erst aus dem Ion P-42 erfolgt; es sei denn, man akzeptiert die Spitze von nur 0.38% bei m/e = 189 (P-29) als Kriterium für das Vorliegen einer relativ stabilen Formylgruppe.

• Die Aufnahme dieses Massenspektrums mit dem Massenspektrometer "Atlas CH 4" verdanke ich Herrn J. Indeherbergh, Laboratoire de la Société Solvay et Cie, Brüssel.

Ein zweites metastabiles Ion bei $m^* = 124$ zeigt den Übergang $176 \rightarrow 148$ an entsprechend einer Eliminierung von $|C=0\rangle$. Die relative Intensität des Peaks bei m/e = 148 beträgt 63%.

Eine dritte breite Bande bei $m^* = 97$ zeigt den Übergang (a) $148 \rightarrow 120$ an. Der Peak bei m/e = 120 hat eine relative Intensität von 37%. Daneben treten folgende Zerfallsreihen auf:

(b)
$$m/e = 148 \xrightarrow{-H^{-}} m/e = 147 \xrightarrow{-CO}{m^{\bullet} 964} m/e = 119 \xrightarrow{-CO}{m^{\bullet} 695} m/e = 91$$

(c) $m/e = 148 \xrightarrow{-OH} m/e = 131 \xrightarrow{-CO}{m^{\bullet} 81} m/e = 103 \xrightarrow{-H^{-}} m/e = 102 \xrightarrow{-CH = CH} m/e = 76$
 $\downarrow \xrightarrow{-CH = CH} m/e = 77$

FIG. 8. Massenspektrum von Baldrinal (2) bei 70 eV.

TABELLE	4.	DŒ	WICHTIGSTEN	Peaks	UND	DÆ	METASTABILEN	BANDEN	IM	MASSENSPEKTRUM
					VON I	Bali	DRINAL 2			

218	(100)	176	(70)	175	(23)	159	(12)
148	(63)	147	(50)	131	(18)	120	(37)
119	(24)	103	(20)	102	(25)	91	(30)
89	(19)	77	(23)	63	(16)	51	(14)
43	(85)						
<i>m</i> *: 142	$(218 \rightarrow 176),$ $(148 \rightarrow 120)$	m*:12	$4 (176 \rightarrow 148) \\ 1 (131 \rightarrow 102)$	i)			
m* . 97 m* 69.5	$(140 \rightarrow 120),$ $(110 \rightarrow 91)$	m*: 0 m*: 57	$5(103 \rightarrow 77)$	1), 1)			
	(11) → 91 <u>,</u>	m . 51	5 (105 - 11	۶. 			

Die Zahlen in Klammern bedeuten die relative Intensität in %, bezogen auf den Molekülionenpeak $P^+ = 218$, dessen Intensität 100% gesetzt wurde. Die metastabilen Ionen sind am Schluss aufgeführt; hier bedeuten die eingeklammerten Zahlen die zugeordneten Übergänge.

F. Die Konstitution von Acevaltratum (10)

Das in langen, weissen Nadeln vom F.P. = 83° kristallisierende 10 hat die Bruttoformel C₂₄H₃₂O₁₀. Es unterscheidet sich von 1 nur durch einen der Säurereste R₁ oder R₂. Beweise:

- (1) Beim sauren oder pyrolytischen Abbau von 10 wird ebenfalls Baldrinal (2) gebildet.
- (2) Verbindung 10 hat das gleiche UV-Maximum von $\lambda = 256 \text{ m}\mu$ wie 1.
- (3) Es gibt mit Br₂/CH₃OH ebenfalls "Monomethoxybromide" wie 1.
- (4) Es bilden sich wie bei 1 mit NaX in Eisessig die entsprechenden Hydrine.
- (5) Das IR-Spektrum von 10 enthält die charakteristischen Hauptbanden des analogen Spektrums von 1 (Fig. 10).
- (6) Das NMR-Spektrum von 10 enthält im Bereich zwischen $\delta = 3$ und $\delta = 7$ ppm die gleichen Signale wie das analoge Spektrum von 1. Das Spektrum zwischen $\delta = 0$ und $\delta = 3$ ppm (Fig. 9) enthält aber folgende charakteristischen Signale:

Signale	Anzahl der Protonen	Zuordnung
$\delta = 0.98 (D/J = 6)$	6	H -C Me
$\delta = 1.51 (S)$	6	RO CMe Me
$\delta = 1.96$ (S)	3	$ \begin{array}{ccc} R & O \\ I & II \\ R - C - O - C - Me \\ R \\ R \end{array} $
$\delta = 2.04$ (S)	3	
$\delta = 2.22$ (M)	3	_с_сн ₂ _с́н
$\delta = 2.88$ (S)	2	$-C - CH_2 - C - O - R$

TABELLE 5. δ-WERTE DER "ACYLPROTONEN" VON ACEVALTRATUM 10

- D = Dublett.
- S = Singulett.

M = Multiplett.

FIG. 9. NMR-Teilspektrum von Acevaltratum (10) in CDCl₃.

FIG. 10. IR-Spektrum von Acevaltratum (10) in KBr (1/300).

Damit dürfte die Formel 10 für Acevaltratum hinreichend bewiesen sein.

G. Die Konstitution des Valtratum-isovaleroxyhydrin (6)

Wie bereits oben erwähnt, halten wir 6 nicht für einen genuinen Ester, obwohl wir ihn aus V. wallichii D.C. isoliert haben. Wir konnten diesen Ester inzwischen meist neben 2 in vielen Valeriana-Drogen des Handels nachweisen, die reichlich Valtratum (1) enthalten.

Die Bildung von 6 neben 2 aus 1 lässt sich dünnschichtchromatographisch wie folgt nachweisen: Man trägt in üblicher Weise eine ätherische Lösung von 1 auf eine Kieselgel-G-Dünnschichtplatte, lässt diese 2–3 Stunden bei Raumtemperatur, gegebenenfalls unter UV-Bestrahlung liegen, trägt dann in gleicher Höhe 6, 2 und wieder 1 auf und chromatographiert. Nach dem Besprühen mit $SbCl_3/CHCl_3$ und Erwärmen auf 105° erscheint im Chromatogrammstreifen des 1, welches als dünner Film auf Kieselgel-G der Bestrahlung und dem Luftsauerstoff ausgesetzt war, das Hydrin 6 als intensiv blauer Fleck oberhalb des gelben Baldrinal-Fleckes, während im Chromatogrammstreifen des rasch entwickelten 1 nur der schmutzig grüne Flecken von reinem 1 zu sehen ist. Für das aus Äther/Petroläther (1:9) in langen, weissen Nadeln vom F.P. = 105– 107°C kristallisierende **6** wurde aus Verbrennungsdaten, der kryoskopischen Molekulargewichtsbestimmung in Benzol und der Integration der Protonen im NMR-Spektrum die Summenformel $C_{27}H_{40}O_{10}$ gefunden. Verbindung **6** ist wie **1** und dessen Hydrine **3**, **4** und **5** stark rechtsdrehend. $[\alpha]_D^{22} + 204.5$ in Methanol; **6** absorbiert im UV bei $\lambda = 256$ mµ wie **1** und **10**. Dem Dienchromophor entsprechen im IR-Spektrum (Fig. 11) die beiden ν -C=C-Banden bei 1612 und 1640 cm⁻¹, sowie die ==C-H Valenzschwingungen bei 3060 cm⁻¹. Die auffallendsten Unterschiede im IR-Spektrum von **6** gegenüber demjenigen von **1** und **10** ist eine zusätzliche dritte ν -C=O-Schwingung bei 1702 cm⁻¹ zu den beiden bei 1735 und 1762, und eine OH-Bande bei 3440 cm⁻¹. Das Hydroxylproton gibt im NMR-Spektrum von **6** ein Singulett bei $\delta = 2.7$, welches beim Verdünnen mit CCl₄ ins höhere Feld wandert. Die NMR-Spektren von **6** und **1** haben im Bereich zwischen $\delta = 4.5$ und $\delta = 7$ praktisch die gleichen Signale. Im höheren Feld fehlt jedoch im Spektrum von **6** das typische AB-Quartett der Oxiranringprotonen bei ca. $\delta = 3$ ppm.

Stattdessen taucht ein 2 Protonen entsprechendes Singulett bei $\delta = 4.27$ ppm auf, welches der Gruppierung – C– CH₂ zugeordnet werden kann, in der X eine Acyloxygruppe bedeutet, da das Signal eine chemische Verschiebung aufweist, OH

die zwischen derjenigen der Methylenprotonen —C — CH_2 —J bei $\delta \cong 3.6$ und

derjenigen der Methylenprotonen EE' entsprechend der Gruppierung

=C-CH₂-O-Ac bei $\delta \simeq 4.75$ im Jodhydrin (3) liegt.

Durch die Hydroxylaminolyse lassen sich nur Isovaleriansäure und Essigsäure nachweisen. Beim sauren Abbau bildet sich wie bei allen von 1 oder 10 ableitbaren Hydrinen kein Baldrinal mehr, sondern es entstehen nur tiefblaue, mit Wasser mischbare Farbsalzlösungen, die bei vorsichtiger Neutralisation allmählich in violette Lösungen übergehen, die bereits zwischen pH = 7 und pH = 8 zu amorphen braunen Pulvern polymerisieren, welche Temperaturen bis 300° ohne sichtbare Veränderungen ausgesetzt werden können.

Dass es sich bei dem Acyloxyrest X um die Isovaleroxygruppe handelt, geht unter anderem aus dem NMR-Spektrum hervor; der Signalgruppe bei $\delta \cong 1$ entsprechen

FIG. 11. IR-Spektrum von Valtratum-Isovaleroxyhydrin (6); in KBr (1/300 mg).

18 Protonen, statt 12 bei 1 oder 3, was auf die Anwesenheit einer zusätzlichen Isopropylgruppe schliessen lässt. Die restlichen 3 Protonen finden sich gemeinsam mit den 6 analogen Protonen der übrigen Isovaleroxygruppen als komplexe Signalgruppe mit Zentrum bei $\delta \cong 2.2$ ppm.

FIG. 12. NMR-Spektrum von 6 in CCl₄; (b) nach Verdünnung.

H. Die Konstitution der Dihydrovalepotriate¹ (16 und 17)

I. Allgemeines. Den Diisovalerylester **16** (1) (Dihydrovalepotriatum,¹ Didrovaltratum²) konnten wir bisher in allen Valtratum (1) führenden Pflanzen nachweisen. In den meisten Valtratum führenden Pflanzen erreichte **16** jedoch nur einen Bruchteil der Valtratumkonzentration. Dabei ist noch bemerkenswert, dass **16** oft nur in den älteren unterirdischen Pflanzenteilen nachgewiesen werden kann. Wie bereits oben erwähnt, gibt es jedoch chemische Rassen, die **16** in beträchtlichen Mengen kumulieren. Aus einer solchen Rasse von V. Wallichii D.C. konnten wir auch erstmals den Isocaproylester (**17**) isolieren.

II. Die Konstitution von Didrovaltratum (16). Aus Verbrennungsanalysen und kryoskopischen Molekulargewichtsbestimmungen ergab sich für die aus Äther/Hexan in langen, weissen Nadeln vom F.P. = 64-65° kristallisierende Substanz 16 die Bruttoformel $C_{22}H_{32}O_8$.

Die 32 Protonen wurden durch das NMR-Spektrum bestätigt.

Funktionelle Gruppen. Das linksdrehende 16, $[\alpha]_D^{20} - 80^\circ$, ist wie 1 ein "Mischester" der Isovalerian- und der Essigsäure. Die Säuren wurden als Hydroxamsäuren

FIG. 13. IR-Spektrum von Didrovaltratum (16), in KBr (1/300 mg)

papierchromatographisch identifiziert.¹¹ Im IR-Spektrum hat 16 analog 1 und 10 2v-C-O-Banden bei 1733 und 1766 cm⁻¹. Verbindung 16 enthält 2 Isovaleroxyund 1 Acetoxygruppe, die durch folgende Signale des NMR-Spektrums bestätigt werden:

Ein aus 12 Protonen bestehendes Dublett bei $\delta = 0.95$ mit J = 6.6 Hz entspricht den Methylgruppen von 2-Isopropylgruppen und ein 3 Protonen entsprechendes Singulett bei $\delta = 2$ beweist die Anwesenheit nur eines Acetatrestes.

FIG. 14. NMR-Spektrum von Didrovaltratum (16) in CCl₄.

In 16 ist nur noch eine Doppelbindung enthalten. Die UV-Absorption dieser Doppelbindung ist nicht exakt bestimmbar; sie schwankt je nach Konzentration der methanolischen Lösung zwischen $\lambda = 204$ und 218 mµ.

Die bei 1672 cm⁻¹ liegende v-C=C-Bande ist sehr intensiv, was für eine Enolätherdoppelbindung spricht. Diese konnte durch die Herstellung der "Methoxybromide" 23 und 24 bestätigt werden. Der chemische Beweis für den Oxiranring gelang durch die Darstellung der "Hydrine" 18 bis 22.

Atomsequenz. Die Sequenz der Protonen in 16 wurde zunächst in Analogie zu derjenigen in 1 unter Zuhilfenahme des NMR-Spektrums wie folgt angenommen und durch Doppelresonanzversuche, welche durch die Figuren 15 und 16 wiedergegeben werden, bestätigt:

 $\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{CO} - \mathbf{CH}_2 - \mathbf{CH}$

Proton (A) kommt als Vinylätherproton die höchste chemische Verschiebung zu. Ihm entspricht das Dublett bei $\delta = 6.5 \text{ mit } J_{AE} \cong 1 \text{ Hz.}$ Die "long-range"-Kopplung mit den Protonen EE' wurde durch Bestrahlen des Protons (A) bewiesen (Fig. 15a), wobei eine deutliche Verschärfung des EE'-AB-Systems festgestellt wurde. Das "Acetalproton" (B) erscheint als Dublett bei $\delta = 5.81$. Es koppelt mit einer Konstanten von $J_{BG} = 5$ Hz mit Proton (G), das als Quartett bei $\delta = 2.70$ zu erkennen ist. Die Kopplung $B \rightarrow G$ ist aus Fig. 15b zu ersehen. Durch Bestrahlen von (B) bei $\delta = 5.81$ Hz vereinfacht sich das Quartett bei $\delta = 2.7$ zu einem Dublett mit $J_{GF} = 8$ Hz. Das Triplett des Protons (C) bei $\delta = 4.92$ mit einer Kopplungskonstanten von J = 6 Hz resultiert aus der Kopplung mit den Methylenprotonen (DD'), die zusammen mit den 4 Methylenprotonen und den 2 tertiären Wasserstoffatomen der Isovaleroxyreste mit Zentrum bei $\delta \cong 2.24$ erscheinen, was ebenfalls durch Doppelresonanz bewiesen wurde (siehe Fig. 15c und Fig. 16d). Durch Bestrahlen des Protons (F) bei $\delta = 2.93$ (Fig. 16e) sind Änderungen der komplexen Signalgruppe bei $\delta = 2.24$ zu erkennen, was ein Hinweis für die Kopplung F \rightarrow DD' ist und aus dem Dublett des Protons (A) ist ein scharfes Singulett geworden, was als ein Beweis für die Allylstellung dieser Protonen ist. Schliesslich wurde durch das in Fig. 16f wiedergegebene

FIG. 15. NMR-Teilspektrum von (16) in $CDCl_3$, Beweis der Kopplungen (A) \rightarrow (EE'), (B) \rightarrow (G) und (C) \rightarrow (DD').

FIG. 16. NMR-Tcilspektrum von 16 in $CDCl_3$, Beweis der Kopplungen $(F) \rightarrow (A)$; (F) $\rightarrow (DD')$ und $(DD') \rightarrow (C)$.

Doppelresonanzexperiment die Kopplung der Protonen (DD') mit Proton (C) bewiesen, indem durch Bestrahlen bei $\delta \simeq 2.24$ das Triplett des Protons (C) bei $\delta = 4.92$ mit $J_{CD} = 6$ Hz zu einem verbreiterten Singulett zusammenbricht.

Abbaureaktionen mit 16. Versuche zur Eliminierung der beiden Isovaleroxygruppen mit dem Ziel, das 5,6-Dihydrobaldrinal-analogon zu gewinnen, schlugen fehl. Die Hydrolyse des Esters wurde unter den verschiedensten Bedingungen versucht, ohne dass dabei der korrespondierende Alkohol erfasst werden konnte. Es trat stets Polymerisation ein. Lediglich durch eine Ammonolyse von 16 mit $NH_3/MeOH$ konnten zwei kristalline Verbindungen erhalten werden, für die wir die Strukturen 25 und 26 aufgrund spektroskopischer Daten vorschlagen.

FIG. 17. IR-Spektrum von "Desacetyl"-didrovaltratum (25) in KBr (1/300).

FIG. 18. NMR-Spektrum von "Desacetyl"-didrovaltratum (25) in CCl4.

FIG. 19. IR-Spektrum von 26 in KBr (1/300).

FIG. 20. NMR-Spektrum von 26 in CCl₄, b.) Teilspektrum nach Verdünnung mit CCl₄.

III. Die Konstitution von "Homo-Didrovaltratum" (17)

Die Substanz 17 unterscheidet sich von 16 dadurch, dass eine der beiden Isovaleroxygruppen durch eine Isocaproxygruppe ersetzt ist. Die Hydroxylaminolyse von 17 und die anschliessende Papierchromatographie¹¹ der Hydroxamsäuren lieferten den eindeutigen Beweis, dass 17 ein "Mischester" der Essig-, Isovalerian- und der Isocapronsäure ist. Durch vergleichende Analyse der NMR-Spektren von 16 und 17 lässt sich der Ersatz einer der beiden Isovaleroxygruppen in 16 durch einen Isocaproxyrest in 17 gut belegen, da sich das Spektrum von 17 nur durch die Signale zwischen $\delta = 1$ und $\delta = 2.5$, welche von der zusätzlichen —CH₂-Gruppe in dem einen Fettsäurerest herrühren, von demjenigen von 16 unterscheidet. (Vergleiche auch das Spektrum Nr. 142 im "Variankatalog" von 4-methyl-n-valeramid = Isocaproylamid) Bezüglich der Stellung der Isocaproxy-Gruppe vgl. den Abschnitt über die Hydroxylaminolyse.

FIG. 21. NMR-Spektrum von "Homodidrovaltratum" (17) in CCl₄.

Die UV- und IR-Spektren von 17 unterscheiden sich nur so geringfügig von den analogen Spektren von 16, dass sie keine zusätzliche Aussage zur Konstitution gestatten. J. Die Konstitution der 8,11-Desoxido-didrovaltrate (14 und 15)

I. Zur Isolierung. Die ebenfalls in langen, weissen Nadeln kristallisierenden Ester 14 und 15 kommen in der "Didrovaltratum-Rasse" von V. Wallichii D.C. nur zu etwa 0.05% vor. Trotzdem lassen sie sich verhältnismässig gut isolieren, da sie bei der Aufarbeitung der genuinen Gesamtester¹² zunächst zusammen mit 16 und 17 als Mischkristallisat anfallen. Beim fraktionierten Kristallisieren aus Äther/ Petroläther oder Isopropanol/Benzin kristallisiert zuerst 16, während sich 17, 14 und 15 in der Mutterlauge anreichern. Zur gleichzeitigen Reindarstellung von 14, 15 und 17 chromatographiert man vorzugsweise eine solche Mutterlauge an Aluminiumoxid/Aluminiumacetat analog der Reindarstellung von 1.⁵

II. Die funktionellen Gruppen. Die verbindungen 14 und 15 unterscheiden sich nur durch ihre Säurereste R_1 und R_2 , und zwar entspricht 14 seinem Sauerstoffhomologen 16, und 15 seinem Sauerstoffhomologen 17, was sich wiederum durch Hydroxylaminolyse und anschliessende Chromatographie der Hydroxamsäuren und durch die NMR-Spektren belegen lässt. Da sich die UV- und IR-Spektren der Verbindungen 14 und 15 kaum unterscheiden und in den NMR-Spektren beider Substanzen die Signale zwischen $\delta = 2.5$ und 7 ppm praktisch ident sind, sollen im folgenden nur die spektroskopischen Daten von 14 zur Konstitutionsermittlung herangezogen werden.

Verbrennungsanalyse und kryoskopische Molekulargewichtsbestimmung in Benzol ergaben für 14 die Bruttoformel $C_{22}H_{32}O_7$. Da das Vorhandensein der gleichen Säurereste wie in 16 bewiesen ist, muss der C_{10} -Baustein von 14 ein Sauerstoffatom weniger enthalten als derjenige von 16. Das IR-Spektrum von 14 zeigt gegenüber dem von 16 Abweichungen, die auf das Fehlen des Oxiranringes hinweisen. Folgende im Spektrum von 16 starke bis mittelstarke Banden fehlen im Spektrum von 14: $v = 1255 \text{ cm}^{-1}$; $v = 1105 \text{ cm}^{-1}$; $v = 910 \text{ cm}^{-1}$.

Die übrigen Banden zeigen keine oder nur geringe Abweichungen. So ist beispielsweise bei 14 eine Erniedrigung der einen Carbonylfrequenz von v = 1766 in 16 nach v = 1752 cm⁻¹, während die zweite Bande bei v = 1733 cm⁻¹ unverändert geblieben ist. Die Enolätherbande bei v = 1672 cm⁻¹ ist in beiden Verbindungen gleich.

Verbindung 14 reagiert nicht wie 16 mit NaJ oder NaSCN in Eisessig/Na-Acetat zu den entsprechenden Hydrinen.

FIG. 22. IR-Spektrum von "8,11-Desoxidodidrovaltratum" (14) in KBr (1/300).

Aus diesen Befunden kann die Anwesenheit einer Epoxidgruppe in 14 ausgeschlossen werden. Der Beweis, dass in 14 anstelle einer Epoxidgruppe eine CH_2 =-C-Gruppe vorliegt, konnte nur NMR-spektroskopisch erbracht werden, da im IR- Spektrum die für diese Gruppe angegebenen Frequenzen¹³ $\nu = 3075-3095$ (CH-Valenz), $\nu = 885-895$ (CH₂ Wagging) $\nu = 1750 - 1800$ und $\nu = 1410-1420$ (CH₂ Rocking) zufolge Überlagerung durch andere Banden schwer nachzuweisen sind.

Im NMR-Spektrum von 14 fehlt das für Epoxide charakteristische AB-Quartett bei $\delta = 3$ ppm; dafür sind jedoch zwei verbreiterte Signale bei $\delta = 5.34$ und $\delta = 5.43$ vorhanden.

FIG. 23. NMR-Spektrum von "8,11-Desoxidodidrovaltratum" (14) in CCl4.

Die "Verbreiterung" der Signale rührt von mehreren "long-range"-Kopplungen her mit Kopplungskonstanten von $J \cong 1$ Hz. Beim "Bestrahlen" der Protonen G und F, welche als Verbreitertes Triplett mit Zentrum bei $\delta = 2.92$ erscheinen, werden die Signale der beiden endständigen Vinylprotonen "einfacher".

Aus dem Dublett des Protons B bei $\delta = 5.88$ mit $J_{BG} = 5$ Hz wurde bei diesem Doppelresonanzexperiment ein Singulett während das Singulett des Protons A bei

FIG. 24. NMR-Teilspektrum von 8,11-Desoxidodidrovaltratum (14) in CDCl₃.

-	1017 F 20 2	3 4 2 3			10 11 70 3			1 00 0 80 4 D (E)	
_	(ni) D 04-C	C 71.0		(9.7) D +c.c	(g.7) 1 0g.c	(8.7 + NI) b 14.6	4.//, 4.02 AB (12.)	5.02, 2.89 AB ()	coci
£	6-22 d (10)	6·67 S	I	5·24 d (2·4)	5-75 t (2-4)	3·14 q (10 + 2·4)	4-71, 4-85 AB (13-5)	3·70, 3·53 AB (10)	cDCI,
6	6·15 d (9·8)	6·65 d (<1)		5:46 d (2·8)	5·69 t (2·8)	2·87 q (9·8 + 2·8)	4-72, 4-57 AB (13)	4·27 S	CCI.
14	5.88 d (5)	6-42 d (< 1)	2·92 m	~2·2 m	5·50 t	2·92 m	4·63, 4·39 AB (12)	5·43, 5·34 m, m	CDCI
16	5-81 d (5)	6-50 d (1)	2·93 m	2·24 m	4-92 t (6)	2·70 q (8 + 5)	4.68, 4.42 AB (12)	3-04, 2-80 AB (5)	CDCI3
25	5·74 d (4·8)	6-45 d (< 1)	2·83 m	~2·0 m	3-90 t (6)	2·60 q (7 + 4·8)	4·67, 4·37 AB (12)	3-00, 2-67 AB (4-8)	cal
26	6·20 d (4)	6-36 d (1)	~2 ^{.0} m	~ 2·0 m	3-85 t (2-4)	2-00 m	4-59, 4-38 AB (12)	4-55, 4-17 AB (12)	CDCI3
+ Die Wart	to cind & Warts	hercoan ouf T	atromethul	TMC) &	- 0 olo interne	m Standard Dia Zahl	lan in Vlommon oind di	constraint V monthaire	
(J) in Hz. Es (bedeuten ferne.	r: S = Singulett	, d = Dubl	ett, t = Triplet	= 0, als internet (t, q) = Quartet	$t \text{ und } \mathbf{m} = \mathbf{Multiplett}.$	י.	s Jeweingen woppiungs	Rousianieu

H-ATOME*
DER
DNUN
ORD
6. Zl
LABELLE
É.

.

338

 $\delta = 6.42$ sowohl wie das AB-Quartett der Protonen EE' bei $\delta = 4.63$ bzw. $\delta = 4.39$ und einer Kopplungskonstanten mit $J_{EE^1} = 12$ Hz "intensitätsärmer" wurden. Das verbreiterte Triplett des Protons C bei $\delta = 5.50$ ist durch das Bestrahlen des Protons G und F praktisch unverändert geblieben. Einen Hinweis für die Richtigkeit der Struktur 14 gibt ferner die Tatsache, dass das Proton C welches im Spektrum von 16 als Triplett bei $\delta = 4.92$ mit einer Kopplungskonstanten von $J_{CD} = 6$ Hz erscheint, durch den Austausch des Oxiranringes gegen die Vinylgruppe eine grössere chemische Verschiebung nach $\delta = 5.5$ zeigt.

K. Zur Hydroxylaminolyse

Für den Nachweis der Säurekomponenten der aus Valeriana isolierten Ester bewährte sich die Überführung dieser in die entsprechenden Hydroxamsäuren und deren chromatographische Identifizierung. Die Darstellung der Hydroxamsäuren erfolgte nach zwei Methoden. Einmal wurden in Anlehnung an die Methode von Fink¹¹ die zu untersuchenden Ester in Methanol/Schwefelsäure "umgeestert" und die überdestillierten Methylester hydroxylaminolysiert, zum anderen erfolgte die Hydroxylaminolyse sofort mit dem Ausgangsester. Da die Methoden zu unterschiedlichen Ergebnissen führten, gelangten beide zur Anwendung. Es fiel uns nämlich auf, dass nach allen direkten Hydroxylaminolysen der Diisovalerylverbindungen wider Erwarten stets der Fleck des Essigsäurehydroxamates intensiver war als der der Isovaleriansäure, während nach vorheriger Umesterung und Überführung in die Hydroxamsäuren erwartungsgemäss stets der Fleck des Isovaleriansäurehydroxamates intensiver war.

Eine Erklärung für dieses Phänomen fanden wir beim Studium der Hydroxylaminolyse an dem Mischester (17).

Bei der direkten Hydroxylaminolyse von 17 bilden sich nämlich nur die Hydroxamsäuren der Isocapron- und der Essigsäure im Verhältnis 1:1, während nach Umesterung in Methanol/H₂SO₄, Destillation der Methylester und Hydroxylaminolyse, die Hydroxamsäuren der Essig-, Isocapron- und der Isovaleriansäure im Verhältnis 1:1:1 gebildet werden. Die Bildung einer Hydroxamsäure mit NH₂OH und dem entsprechenden Ester verläuft notwendigerweise unter Acylsauerstoffspaltung. Da bei der Hydroxylaminolyse von 17 ausser den Hydroxamaten der Essig- und der Isocapronsäure freie Isovaleriansäure entsteht, wie sich leicht nachweisen liess, muss angenommen werden, dass sich die Isovaleroxygruppe am C-10 befindet, da von den drei Estergruppen nur die am C-10 so reaktiv sein kann, dass sie sich durch ein nucleophiles Agens verdrängen lässt, bzw. bei einer Solvolyse Spaltung an der Alkylsauerstoffbindung erleidet (Allylester !).

Aus den Beobachtungen lässt sich ableiten, dass in Formel 17 $R_2 = CO \cdot CH_2$ — CHMe₂ und $R_1 = CO(CH_2)_2CHMe_2$ bedeuten müssen.

L. Zur Konfiguration

Die Bestimmung der Konfiguration an dem starren, partiell hydrierten Cyclopenta-[c]-pyran-system ist praktrisch mit Hilfe der aus den NMR-Messungen gewonnenen Daten allein möglich.

Betrachtet man die Grösse der Kopplungskonstanten J_{19} , so findet man bei 1 und allen untersuchten Derivaten von 1, dass sie etwa 10 Hz beträgt, während sie bei den analogen "Dihydroderivaten" wie beispielsweise bei 16 und 14 u.a. nur etwa 5 Hz gross ist. Am "Dreiding"-Modell von 1 lässt sich zeigen, dass der Diederwinkel $\phi_{H=1, H=9}$, hier nur zwei Grössen einnehmen kann, nämlich 180° bzw. 60° unter der Voraussetzung natürlich, dass die energieärmere "Sessel"- bzw. "Twist"-Konformation vorliegt; (die "Wannen"-Konformation kann aus energetischen Gründen ausgeschlossen werden, da hier die Doppelbindungsebenen einen Winkel von ca. 120° einschliessen würden). Nach den von Karplus¹⁴ errechneten Werten müsste der Kopplungskonstanten $J_{19} = 5$ Hz ein Diederwinkel von ca. 45° und derjenigen von $J_{19} = 10$ Hz ein solcher von ca. 140° entsprechen. Dieser Beweis für die transbzw.. "axiale" Stellung der Protonen an C-1 und C-9 in 1 und seinen Derivaten und einer cis- bzw. "äquatorialen" Stellung in 16 und seinen Derivaten wird gestützt durch Untersuchungen von Lemieux et al.,15 wonach in allen Fällen die Kopplungskonstante zwischen zwei benachbarten axialen Protonen "stets am grössten ist und zwischen 8 und 10 Hz liegt". Im Einklang hiermit steht ferner die Tatsache, dass 1 schon bei relativ niedrigen Temperaturen unter Verlust von 2 Äquivalenten Isovaleriansäure in 2 übergeht. Diese leichte Eliminierung der Isovaleriansäure spricht für eine cis-Eliminierung.¹⁶

Die durch Doppelresonanz bewiesene "long-range"-Kopplung in 1 und z.B. in 3 zwischen H-9 und H-7 mit einer Kopplungskonstanten von $J_{79} = 2.8$ bzw. 2.4 Hz könnte nach A. Rassat *et al.*¹⁷ ein ⁴J sein und über die "W"- bzw. "M-Form" laufen, oder sie ist eine sogenannte homoallylische Kopplung, wie sie von Sternhell¹⁹ an vielen Doppelbindungssystemen beobachtet wurde, wobei aber angenommen werden müsste, dass die Kopplungskonstante J_{96} aus der dann ebenfalls zu fordernden allylischen Kopplung zwischen H-9 und H-6 unmessbar klein ist.

C-7 für 1 und seine Derivate auch belegt sein. Wie ebenfalls durch Doppelresonanz belegt werden konnte, koppelt H-9 in 16 nicht mit H-7, was auch schon aus der Grösse der Kopplungskonstanten von 8 Hz für unwahrscheinlich angenommen wurde. Vielmehr koppelt in 16 H-9 mit H-5, $(J_{25} \cong 8 \text{ Hz})$ und H-7 mit den beiden Protonen an C-6 mit $J_{76} \cong 6$ Hz. Danach muss für die Protonen an C-7 und C-9 in 16 eine "transStellung" gefordert werden. Damit in Einklang steht auch der Hinweis, dass es uns nicht gelungen ist, aus 16 durch Eliminierung der Isovaleroxygruppen zum 5,6-Dihydrobaldrinal-Analogon zu kommen. Für die Konfiguration des Oxiranringes in 1 gibt es aus den NMR-Daten nur den Hinweis, dass durch Öffnen des Epoxids z.B. mit HJ zum Jodhydrin 3 das Proton am C-1 um einen grösseren Betrag ins tiefere Feld wandert als das am C-7, was dafür spricht, dass die leicht verlaufende Eliminierung der C-7-Isovaleroxygruppe unter Umlagerung des Epoxids in eine Aldehydgruppe ist ein Argument für eine "cis-Anordnung" der Isovaleroxy- und der Methylengruppe bzw. der Protonen H-7 und H-9 mit der Sauerstoffbrücke des Oxiranringes in 1. Was die Konfiguration des Epoxids in 16 und seinen Derivaten betrifft, so nehmen wir ebenfalls eine "cis-Stellung" zum H-9 an.

Die Kopplungskonstante von $J_{95} = 8$ Hz weist nach Karplus¹⁴ darauf hin, dass in 16 die Protonen H-9 und H-5 *cis*-Konfiguration haben (Diederwinkel = 0-25°). Erwähnenswert in diesem Zusammenhang sind auch noch die Befunde der optischen Drehung.

Die Umkehr der Konfiguration an den Asymmetriezentren C-1 und C-7 im rechtsdrehenden 1 scheint nämlich mit der Tatsache in Zusammenhang zu stehen, dass sein Homologes 16 die Ebene des polarisierten Lichtes links dreht. Ein Vergleich aller verschiedenen spektroskopischen, optischen und chemischen Befunde lässt den Schluss zu, dass allen bisher isolierten, rechtsdrehenden Valepotriaten die gleiche Konfiguration an den C-Atomen C_1 , C_7 und C_9 zukommt, wie sie für 1, den "Hauptester" dieser Reihe, oben dargestellt ist und dass analog allen linksdrehenden Dihydrovalepotriaten die gleiche Konfiguration an den C-Atomen C_1 , C_7 und C_9 zukommt wie sie oben für 16 vorgeschlagen wird.

EXPERIMENTELLER TEIL

Die Schmelzpunkte wurden auf dem Kofler-Block bestimmt und sind nicht korrigiert. Die Drehwerte wurden in einem Kreispolarimeter 001° von ZEISS bestimmt.

Die UV-Spektren wurden mit einem Unicam-Spektrometer, Modell "SP 500", die IR-Spektren mit einem Zweistrahlgitterspektrometer von Hilger & Watts, Modell "Infrascan" und die NMR-Spektren mit den Varian-Spektrometern HR-100⁺ und HA-100 aufgenommen.

Für die Säulenchromatographie wurde Aluminiumoxid "Woelm" verwendet, das mit Essig- oder Propionsäure in wasserfreiem Medium teilweise inaktiviert wurde. Für die Dünnschichtchromatographie wurde "Kieselgel G" von Merck als Adsorbens und die Fliessmittelsysteme n-Hexan, Äthylmethylketon, Glycerinmonoacetat (80:20:10; Oberphase), im folgenden als "DC 14" bezeichnet, und n-Hexan, Essigsäure, Glycerinmonoacetat (80:25:5; Oberphase) und 3 Teile Äthylmethylketon, im folgenden als "DC 20" bezeichnet, verwendet, Die Detektion erfolgte durch Besprühen mit SbCl₃/CHCl₃ und Erwärmen auf 105°.

Die Analysen wurden in unserem analytischen Laboratorium (Dr. Wiele) und einige Molekulargewichtsbestimmungen in unserem physikalischen Laboratorium (Dr. Rosskopf) durchgeführt. Die Extraktion grösserer Drogenmengen erfolgte in unserem pharmazeutischen Technikum unter der Leitung von Dr. v. Falkenhausen.

A. Isolierung der genuinen Gesamtester aus Rhizomen von V wallichii D.C. indischer Provenienz

Gemahlene indische Baldrianwurzeln (60.0 Kg) wurden in einem 2001. Perkolator mit 901. Essigester, der 1% Eisessig enthielt, gut eingerührt. Nach 24-stündigem Stehen wurde mit der Perkolation begonnen und zwar derart, dass innerhalb von 2 Tagen unter portionsweiser Zugabe von weiteren 1001. Perkolationsflüssigkeit 1901. Gesamtperkolat erhalten wurden. Dieses wurde nun anteilweise mit 3% iger NaHCO₃ lösung und 5% iger NaCl lösung gewaschen, mit Kohle geklärt, über Na₂SO₄ getrocknet und bis zur Gewichtskonstanz im Rotationsverdampfer bei 30° eingeengt. Die Ausbeute an hochviskosem, gelbgefärbtem "Rohestergemisch" betrug 3.15 kg = 5.25%.

Zur Abtrennung der Isovaleriansäureester von ätherischen Ölen, β -Sitosterin, unspezifischen Fettsäureestern und anderen unerwünschten Begleitsubstanzen, wurden die 3.15 kg Rohestergemisch in 181. 90% iger ACOH bei 10° gelöst und die Lösung 3 mal mit je 51. mit 90% iger ACOH abgesättigtem Benzin extrahiert. Diese Benzinphase wurde verworfen. Anschliessend wurde die ACOH-phase mit der 1½-fachen Volumenmenge Wasser verdünnt und 6 mal mit je 151. Benzin extrahiert.

Die vereinigten esterhaltigen Benzinphasen wurden mit einer 0.25 % igen NaOH säurefrei gewaschen, über Na₂SO₄ getrocknet, mit Kohle geklärt und im Vakuum bei 30° bis zur Gewichtskonstanz eingeengt. Die Ausbeute an gereinigtem, hellgelb gefärbtem Esteröl betrug 0.7726 kg = 1.29% bezogen auf die getrocknete Droge.

B. Trennung und Reindarstellung der Isovaleriansäureester 1, 16 und 10

Aluminiumoxid (5 Kg) der Aktivitätsstufe I nach Brockmann wurden in einem Gemisch aus 41. Aceton, 11. Glycerinmonoacetat und 0-21. Propionsäure aufgeschlämmt. Nach Abklingen der positiven Wärmetönung wurde die Aufschlämmung in eine mit einem Kühlmantel versehene Säule gefüllt und mit 41. Hexan acetonfrei gewaschen. Anschliessend wurden 0-25 kg des nach (A) gewonnenen hellgelb gefärbten Esteröles mit 50 ml Hexan verdünnt und auf die Säule gegeben. Die Elution erfolgte mit insgesamt 201.

* Die Aufnahmen der Spektren mit dem Varian-Spektrometer HR-100 wurden in den physikalischen Laboratorien der Société Solvay & Cie., Brüssel, unter der Leitung von J. Migeal und R. Yernaux durchgeführt. Hexan. 40 Fraktionen á 0.5 l. wurden aufgefangen. Die Tropfgeschwindigkeit betrug 10 ml/Minute, die Temp 15°.

Valtratum (1). Ab Fraktion 5 bis zur 24. Fraktion wurde nur Valtratum (1) eluiert. Die Kontrolle erfolgte dünnschichtchromatographisch.

Die vereinigten Fraktionen Nr. 5 bis 24 (ca. 101.) wurden auf 21. konzentriert, mit 0·21. 1% iger NaOH und 21. Wasser säurefrei gewaschen und über Na₂SO₄ und Kohle getrocknet. Nach Einengen im Vakuum resultierten 0·0935 kg reines 1 (37·4% des Öles) (C₂₂H₃₀O₈. Ber: C, 62·54; H, 7·15; O, 30·31; M, 422·46. Gef: C, 62·76; H, 7·32, O, 29·92% M, 422·00*). $\lambda_{max1} = 204 \text{ m}\mu$; $\varepsilon \leq 4000$ (in MeOH); $\lambda_{max2} = 256 \text{ m}\mu$; $\varepsilon = 16,050$ (in MeOH); $n_D^{20} = 1.4906$; $[\alpha]_D^{21} = +172 \cdot 7^\circ$ (in MeOH); IR-Spektrum vgl. Fig. 1. NMR-Spektrum vgl. Tabelle 6.

Didrovaltratum (16). Aus der 27.-29. Fraktion konnten nach analoger Aufarbeitung, wie oben geschildert, 2.7 g des Esters 16 isoliert werden, der nach Umkristallisation aus Äther/Hexan folgende physikalische Daten zeigte:

F.P. 64-65°C (Kofler); $[\alpha]_{B^{1}}^{21} = -80.8^{\circ}$, in MeOH. $C_{22}H_{32}O_{8}$. Ber: C, 62.24; H, 7.59; O, 30.17; M, 424.5. Gef: C, 62.21; H, 7.55; O, 30.24% M, 413.0*). $\lambda_{max} = 206 \text{ m}\mu$; $\epsilon \cong 6500$ (in MeOH); IR-Spektrum vgl. Fig. 13; NMR-Spektrum vgl. Tabelle 6 und Fig. 14.

Acevaltratum (10). Zur Elution des Esters 10 wurde dem Hexan ab Fraktion 30 10% Aceton zugegeben. Die zusammengefassten Fraktionen von 30-40 (etwa 51.) wurden bis zur Gewichtskonstanz im Vakuum eingeengt. Es resultierten 30 g eines Kristallisates. Dieses wurde in 200 ml Äther gelöst, die Lösung einige Male mit Wasser gewaschen und über Na₂SO₄ und Kohle getrocknet und gereinigt. Nach erneutem Einengen resultierte 10 in Form weisser Nadeln vom F.P. = 72-74°. Zur Analyse wurde aus heissem Hexan umkristallisiert. F.P. = 83-84° (Kofler). C₂₄H₃₂O₁₀. Ber: C, 59·99; H, 6·71; O, 33·30; M, 480·52. Gef: C, 59·52; H, 6·79; O, 33·83% M, 422·00[•]). $\lambda_{max 1} = 204 \text{ mµ} (\varepsilon < 4000)$ (in MeOH); $\lambda_{max 2} = 256 \text{ mµ} (\varepsilon = 16,970)$ (in MeOH); $\lambda_{min} = 208 \text{ mµ} (\varepsilon = 950)$ (in MeOH); $[\alpha]_D^{24} = +163\cdot7$ (in MeOH) IR-Spektrum vgl. Fig. 10; NMR-Spektrum vgl. Fig. 9 und Tabellen 5 und 6.

C Isolierung von 16 ohne Chromatographie

Aus Rhizomen von V. *wallichii* D.C. pakistanischer Provenienz, welche einen Gehalt von durchschnittlich 2.8% 16 hatte, konnte die Isolierung von 16 ohne Säulenchromatographie durchgeführt werden: 600 kg gemahlene Rhizome wurden in einem 2001. fassenden Perkolator mit 901. Essigester, der 1% AcOH enthielt, angeteigt und 24 Stunden bei 20° stehengelassen. Dann wurden innerhalb 3 Tagen unter portionsweiser Zugabe von weiteren 901. Essigester und 1% AcOH 1351. Gesamtperkolat abgelassen. Das Perkolat wurde 2 mal mit je 501. und einmal mit 351.025% iger NaOH säurefrei gewaschen, über Na₂SO₄ getrocknet, über Kohle geklärt und im Vakuum bei 30° bis zur Gewichtskonstanz eingeengt. 4:602 kg = 7.7% rohes, hellbraun gefärbtes Esteröl wurden erhalten.

Je 2.3 kg rohes Esteröl wurden in 13.8 l. 90% iger AcOH gelöst und je einmal mit 4 l. und zweimal mit 3 l. mit 90% iger AcOH abgesättigtem Benzin ausgeschüttelt.

Diese Benzinphase wurde verworfen. Die AcOHphasen wurden dann mit der $1\frac{1}{2}$ fachen Volumenmenge Eiswasser versetzt und je 4 mal mit 101. Benzin ausgerührt. Die esterhaltigen Benzinphasen wurden nun mit je 4 mal 101. 0-25% iger NaOH, die 0.5% NaCl enthielt, säurefrei gewaschen, über Na₂SO₄ getrocknet, mit Kohle geklärt und im Rotationsverdampfer bei 30° bis zur Gewichtskonstanz eingeengt.

Es resultierten 1,463 kg gereinigtes Esteröl, d.s. $2\cdot44\%$ bezogen auf die getrocknete Droge. Dieses Öl kristallisierte nach mehrtätigem Stehen bei $+5^{\circ}$. Nach Umkristallisieren aus Äther/Hexan (1:9) konnten 0-952 kg weisse Nadeln vom F.P. = $58-62^{\circ}$ erhalten werden, d.s. $1\cdot58\%$ bezogen auf die getrocknete Droge und $65\cdot0\%$ bezogen auf das gereinigte Esteröl. Zur Analyse wurde noch einmal aus Äther/Hexan umkristallisiert. F.P. = $63-64^{\circ}$. Die umkristallisierte Substanz war mit 16 ident.

Durch die Dünnschichtchromatographie im System "DC 20" konnte festgestellt werden, dass die Mutterlaugen von 16 neben 16, 1 und 10 noch andere Ester enthielten.

D. Isolierung von 14, 15 und 17 aus den Mutterlaugen von 16

Aluminiumoxid "Woelm" (5 Kg) wurden in einem Gemisch, bestehend aus 500 ml Äthylmethylketon, 750 ml Glycerinmonoacetat, 100 ml Propionsäure, 50 ml AcOH und 2000 ml n-Heptan aufgeschlämmt. Nach Abkühlung der sich beim Herstellen erwärmenden Aufschlämmung wurde diese in eine mit einem Kühlmantel versehene Säule gefüllt und mit 151. n-Heptan gewaschen.

* Kryoskopisch in Benzol.

44 g teilweise kristallisierte "Mutterlauge" von 16 wurde in 250 ml n-Heptan und 50 ml AcOEt gelöst auf die Säule gegeben. Dann wurde mit n-Heptan eluiert. Die Tropfgeschwindigkeit betrug ca. 5 ml/ Minute, die Fraktionsgrösse 100-500 ml. Die Kontrolle der Fraktionen erfolgte dünnschichtchromatographisch. Die zusammengefassten Fraktionen wurden mit 0.5% iger K₂CO₃-Lösung und mit Wasser neutral gewaschen.

Isolierung von 14 und 15. Aus den Fraktionen 0-9 wurden 0.44 g Rückstand erhalten, aus dem durch Kristallisation aus Äther/Petroläther (1:2) 0-136 g eines Gemisches von 14 und 15 als weisse Nadeln vom F.P. = 53-60° resultierten. Durch zweimaliges Umkristallisieren aus Äthanol/H₂O konnten ca. 20 mg 14 vom F.P. = 68-70° gewonnen werden. ($C_{22}H_{32}O_7$ M = 408-5. Ber: C, 64-68; H, 7-90; O, 27-42. Gef: C, 64-33; H, 8-13; O, 27-54% $\lambda_{max} \cong 204$ mµ (in MeOH). IR-Spektrum vgl. Fig. 22, NMR-Spektrum vgl. Tabelle 6 und Fig. 23.

Verbindung 15 konnte nicht ganz rein erhalten werden, sie war stets mit 14 verunreinigt. Das NMR-Spektrum und die Hydroxylaminolyse (siehe weiter unten) sprachen jedoch eindeutig dafür, dass 15 ein mit 14 homologer Isocaproylester ist. Die Fraktionen Nr. 10-39 enthielten vorwiegend 1 und wurden verworfen.

Isolierung von 17. Die Fraktionen Nr. 40–60 ergaben 7.527 g kristallinen Rückstand, der vornehmlich aus 17 bestand. Nach mehrmaligem Umkristallisieren aus Petroläther/n-Heptan/Äther (25:25:5) wurden 1.46 g 17 erhalten, das einen konstanten Schmelzpunkt hatte und dünnschichtchromatographisch einheitlich war. ($C_{23}H_{34}O_8$. M, 438·52. Ber: C, 63·00; H, 7.82; O, 29·18. Gef: C, 63·14; H, 7·84; O, 29·02%.) F.P. = 50–51°; $[\alpha]_{D}^{21} = -72°$ in MeOH; $\lambda_{max} \cong 206 \text{ mµ}$; $\varepsilon \cong 6400$; NMR-Spektrum vgl. Fig. 21

Die Fraktionen Nr. 61-84 lieferten insgesamt 12:61 aus 17 und 16 bestehendes Mischkristallisat.

Aus den Fraktionen 85–91 konnten noch 184 g reines 16 vom F.P. = $64-65^{\circ}$ gewonnen werden. Der Mischschmelzpunkt aus 16 und 17 ergab $54-56^{\circ}$.

E. Isolierung von 6

Eine Säule von 30 mm Durchmesser wurde mit einer Mischung aus 1500 g Aluminiumoxid, 1500 ml Aceton, 300 ml Glycerinmonoacetat und 7.5 ml AcOH beschickt. Nach Stehen über Nacht wurde mit insgesamt 51. n-Hexan ausgewaschen. Dann wurden 75 g eines aus Rhizomen von V. Wallichii D.C. nepalesischer Provenienz gewonnenen "Gesamtestergemisches", mit 75 ml n-Hexan verrührt, auf die Säule gegeben. Es wurde zunächst nur mit n-Hexan eluiert, und zwar so lange, bis kein Valtratum (1) mehr in den Eluaten nachweisbar war. Dann wurde dem Elutionsmittel 5% Aceton zugesetzt. Mit diesem Gemisch wurde zunächst Acevaltratum (10) eluiert: Insgesamt wurden aus 7 Fraktionen á 200 ml 9.11 g (10) gewonnen, welches nach Umkristallisation aus n-Hexan/Äther (9:1) bei 82–83.5° schmolz. Aus den anschliessenden 5 Fraktionen á 200 ml wurden ca. 4 g Öl gewonnen, das beim Stehen im Kühlschrank teilweise kristallisierte. Nach Verreiben und Abwaschen mit n-Hexan/Äther (9:1) konnten weisse Nadeln vom F.P. = 105–107° gewonnen werden, die nicht ident mit 10 waren, wie sich aus dem Dünnschichtchromatogramm, dem Mischschmelzpunkt und dem IR-Spektrum ergab.

Die Substanz konnte als "Isovaleroxy-Hydrin" von Valtratum identifiziert werden. $C_{27}H_{40}O_{10}$. Ber: C, 61·82; H, 7·68; O, 30·50. M, 524·62. Gef: C, 61·69; H, 7·94; O, 30·37%. M, 470·0, Kryoskopisch in Benzol); F.P. = 105-107°; $[\alpha]_{2}^{22} = +204\cdot59$ (in MeOH); $\lambda_{max} = 256 \text{ mµ}$; $\varepsilon = 16.840$ (in MeOH); $\lambda_{min} = 216 \text{ mµ}$; $\varepsilon = 1862$ (in MeOH); IR-Spektrum vgl. Fig. 11; NMR-Spektrum vgl. Tabelle 6 und Fig. 12.

F. Isolierung von 1, 10 und 16 aus Centranthus ruber D.C.

Von einer Pflanze stammende (529 g), frische Centranthus-Wurzeln, Rhizome und Stengelansätze (bestimmte Menge Trockensubstanz = 132.8 g) wurden mit Trockeneis fein vermahlen und in einem Gefäss mit so viel AcOEt, dem 1 % AcOH zugesetzt war, perkoliert, dass 3 l. Gesamtperkolat vorlagen. Das mit 2% iger K_2CO_3 -Lösung und Wasser neutral gewaschene Perkolat wurde nach Trocknen über Na_2SO_4 im Rotationsverdampfer bei 35° bis zur Gewichtskonstanz eingeengt. Es resultierten 606 g gelbbraunes Öl, d. s. 1.15% des Frischgewichtes und 4.56% des Trockengewichtes. Dieses Öl enthielt nach einer semiquantitativen Bestimmung auf der Dünnschichtplatte etwa 67% Valtratum (1), etwa 3.0% Didrovaltratum (16) und 5% Acevaltratum (10).

Chromatographische Reindarstellung von 1, 10 und 16

Säulenfüllung. 600 g Aluminiumoxid Woelm (Akt.-Stufe I) wurden in ein Gemisch von 300 ml n-Hexan, 11 ml Propionsäure, 5 ml AcOH, 80 ml Glycerinmonoacetat und 60 ml Äthylmethylketon eingerührt und nach Abklingen der dabei aufgetretenen Wärmetönung in eine Säule gespült. Nach Waschen der Füllung mit ca. 2.5 l. n-Hexan wurden 6.06 g des "Esteröles" in 10 ml Äthylmethylketon und 5 ml n-Hexan gelöst, auf die Säule gegeben. Nach Eindringen des Öles wurde mit n-Hexan eluiert. Nach einem Vorlauf von 500 ml bei einer Tropfgeschwindigkeit von 20 ml/400 Sekunden wurden 204 Fraktionen á 20 ml aufgefangen. Die Raumtemperatur betrug 20–21°. Die Kontrolle der Fraktionen erfolgte DS-chromatographisch im Fliessmittelsystem "DC 14". Die zusammengefassten Fraktionen wurden mit Wasser und 0.5% K₂CO₃-Lösung neutral gewaschen, über MgSO₄ getrocknet und im Rotationsverdampfer bei 35° Aussentemperatur eingeengt.

Die Ergebnisse der Isolierung sind in der folgenden Tabelle zusammengefasst:

TABELLE 7. CHROMATOGRAPHISCHES	TRENNERGEBNIS DES ISOVALERIANSÄUREESTERÖLES AUS CENT	TRANTHUS
	RUBER D.C.	

Fraktion Nr.	Menge 8	Substanz	Beschaffenheit	Umkristallisierte Menge aus Äther/n-Hexan (1:9)	F.P. Kofler
1-5	0-1679	ätherische Öle	ölig		
6-17	1-0300	β-Sitosterin + 1	grünlicher Kristallbrei		
18-32	0-9698	1	farbloses Öl*	_	
33-55	2.1242	1 Spur 16	farbloses Öl		
56-65	0-1928	1 + 16	farbloses Öl	_	
66-83	0-1310	16	kristallin	0.0426	63°
84-99	0-0326	Rest 16 + 10	kristallin		
100-149	0.1189	10	kristallin	0-0834	79–8 0°
150-180	0.2787	Rest 10 und andere	ölig	_	
181–204	0-0998	Rest 10 und andere	ölig	_	
insgesamt	5.1457				

* Das farblose Öl (1) erstarrt im Kühlschrank zu einer weissen Masse. Die gleiche Beobachtung machten auch E. Mannetstätter *et al.*,¹⁸ welche inzwischen 1 als "Substanz B" ebenfalls aus *Centranthus ruber* D.C. neben Baldrinal (2)—als Substanz A 1—nach unserer Veröffentlichung¹ isoliert haben.

G. Darstellung von Baldrinal (2)

Valtratum (1) (10 g) wurden in 20 ml CHCl₃ gelöst und die Lösung bei 20° mit einer Lösung von 20 g CCl₃COOH in 40 ml CHCl₃ versetzt. Die klare Lösung färbt sich sofort gelb-grün und nach wenigen Minuten dunkelgrün-blau. Es tritt ein intensiver Geruch nach Isovaleriansäure ein. Nach 10 Minuten war bereits kein 1 mehr nachweisbar. Die Lösung wurde daher mit 60 ml CHCl₃ verdünnt und zunächst so lange mit H₂O gewaschen, bis das Waschwasser etwa pH = 4 hatte. Dann wurde mit 125 ml mit NaCl-haltiger, 0.5% iger NaHCO₃-Lösung neutral gewaschen, über MgSO₄ getrocknet und eingeengt. Der dunkelbraune, ölige Rückstande wurde an einer Kieselgel-Säule chromatographiert: 400 g Kieselgel (0·2-0·5 mm) wurden mit 20 g Kieselgel der Korngrösse unter 0·08 mm vermischt und die Mischung in einer Lösung von 540 ml Leichtbenzin und 60 ml Äthylmethylketon 2 Stunden stehen gelassen. Nach

345

Füllen der Säule wurde die Gel-Aufschlämmung mit 1500 ml Benzin gewaschen. Nun wurde der ölige Rückstand in 10 ml Äthylmethylketon gelöst auf die Säule gegeben. Zunächst wurde mit 500 ml Benzin eluiert. Dann wurden zum Benzin steigende Mengen Äthylmethylketon zugesetzt. Die gelbe Baldrinal (2)—Zone konnte erst mit einem Gemisch aus ca. 80 Teilen Benzin und 20 Teilen Äthylmethylketon eluiert werden. Es wurden Fraktionen zu 200 ml aufgefangen. Aus den 2 enthaltenden Fraktionen konnten durch Einengen 0.9 g 2 kristallin erhalten werden; F.P. = 109–110°. Nach Umkristallisieren aus Äther/Petroläther wurden 0.74 g als gelbbraune Prismen vom F.P. = 112–113° erhalten. $C_{12}H_{10}O_4$. Ber: C, 66-05; H, 4·62; O, 29·33. M: 218·21. Gef: C, 66-04; H, 4·60; O, 29·36 %. M(kryoskopisch in Benzol): 214. M (massenspektrometrisch): 218.) $\lambda_{max1} = 227 \text{ m}\mu$; $\varepsilon_1 = 15,820$; $\lambda_{max2} = 244 \text{ m}\mu$; $\varepsilon_2 = 15,030$; $\lambda_{max3} = 287 \text{ m}\mu$; $\varepsilon_3 = 12,180$; VIS: $\lambda_{max4} = 425 \text{ m}\mu$; $\varepsilon_4 = 7395$; IR: Fig. 6; NMR: Tabelle 2.

Baldrinal—DNPH; dunkelbraune Kristalle ($C_{18}H_{14}O_7N_4$, F.P. = 235–236°. Ber: N, 14.40; Gef: N, 14.55%.)

Baldrinal-Semicarbazon; weinrote Kristalle ($C_{13}H_{13}O_4N_3$, F.P. = 210-212° unter Zers. Ber: C, 56.72; H, 4.76; N, 15.26. Gef: C, 57.20; H, 5.00; N, 15.44%.)

Baldrinal-Thiosemicarbazon weinrote Kristalle, $C_{13}H_{13}O_3N_3S$, F.P. = ab 212° Zersetzung. Auf analogem Wege wurde 2 aus 10 mit einer Ausbeute von 20% d. Th. gewonnen.

H. Darstellung der "Hydrine" von 1, 10 und 16

(I) Valtratunjodhydrin (3). Verbindung 1 (5 g) und 10 g AcONa wurden in 50 ml Eisessig gelöst und diese Lösung wurde mit 1,785 g NaJ, gelöst in 8 ml H₂O, versetzt, wobei sich der Ansatz gelbbraun färbte. Nach 4 Stunden Stehen bei 0-5° wurde das zu einem Kristallbrei erstarrte Gemisch mit Eisewasser verdünnt und das Jodhydrin 3 abgenutscht. Nach Waschen mit Wasser und Trocknen im Vakuum bei 60° Aussentemperatur resultierten 5 g rohes 3. Die essigsaure Mutterlauge wurde noch 5 mal mit je 50 ml Äther extrahiert. Die Ätherphasen brachten nach üblicher Aufarbeitung noch ca. 1·5 g rohes 3. Nach Umkristallisieren aus Äther/n-Heptan (1:9) wurden 5·58 g 3, das sind 86% d. Th., als lange, weisse Nadeln vom F.P. = 112° erhalten. Die Substanz ist unter Lichtausschluss sehr gut haltbar. (C₂₂H₃₁O₈J. Ber: C, 48·01; H, 5·68; J, 23·07. M, 550·40. Gef: C, 48·13; H, 5·66; J, 22·56% M, (RAST in Naphthalin), 543); $[\alpha]_D^{21} = +217\cdot1°$ in MeOH; $\lambda_{max} = 256 \text{ m}\mu$; $\varepsilon = 15,970$ in MeOH; $\lambda_{min} = 212 \text{ m}\mu$; $\varepsilon = 2180$ in MeOH; IR-Spektrum: Fig. 3 und Tabelle 6.

(II) Valtratumrhodanohydrin (4). Verbindung 1 (60 g) und 12 g NaOCOCH₃ wurden in 60 ml Eisessig gelöst und mit einer Lösung von 2.775 g KSCN in 14 ml H₂O versetzt. Nach Stehen über Nacht zwischen 0 und 5° wurde der gelbbraune Ansatz mit der doppelten Menge Wasser versetzt und 4 mal mit je 50 ml Äther extrahiert. Nach Waschen mit Wasser, Trocknen über MgSO₄ mit Kohlezusatz, Filtrieren und Einengen im Vakuum wurde ein farbloses Öl erhalten, das sehr rasch kristallisierte. Nach Umkristallisieren aus Äther/Benzin wurde 4 mit einer Ausbeute von 75% d. Th. als lange, weisse Nadeln vom F.P. = 106-109° erhalten. Die Substanz ist unter Lichtausschluss sehr gut haltbar. (C₂₃H₃₁O₈NS. M, 481:56. Ber: C, 57:36; H, 648; N, 2.91. Gef: C, 57:46; H, 6:63; N, 2:86%); $[\alpha]_{D}^{22} = +209:17°$ (in MeOH); λ_{max} 256 mµ; $\varepsilon = 16,400$ in MeOH; λ_{min} 212 mµ; $\varepsilon = 2565$ in MeOH; IR-Spektrum: --OH: 3480; --C=N: 2150;

-C=O (Ester): 1750, 1730, C=C : 1640 und 1606 cm⁻¹ (KBr).

(III) Valtratumbromhydrin (5). Verbindung 1 und 2 g AcONa wurden in 10 ml Eisessig gelöst und mit einer Lösung von 0.25 g NaBr in 2 ml H₂O versetzt. Der Ansatz wurde 2 Tage bei 22° stehengelassen, da die Reaktion nicht so glatt ablief wie mit Alkali-Jodid bzw. -Rhodanid. Durch das lange Stehen bei 22° hatte sich auch etwas Baldrinal (2) gebildet. Der mit Wasser verdünnte Ansatz wurde mit Äther/Benzin 1:1 extrahiert, die lipophile Phase mit Wasser säurefrei gewaschen, über MgSO₄ und Kohle getrocknet, filtriert und eingeengt. Der zunächst ölige Rückstand kristallisierte nach Verreiben mit wenig Äther/Benzin. Nach Umkristallisieren aus Äther/Benzin 1:9 wurden weisse Nadeln vom F.P. = 66-68° erhalten. Die Substanz ist nur wenige Tage haltbar. Schon bei 20° und Tageslicht beginnt sie sich innerhalb weniger Stunden unter grün-blau-Färbung zu zersetzen. C₂₂H₃₁O₈Br, M = 503·4. Ber: Br, 17·87; Gef: Br, 16·13 %); UV: $\lambda_{max} = 256 \, \text{m}\mu \, (MeOH)$; IR: ν_{max} ; --OH: 3500; C=O (Ester): 1752 und 1735; C=C: 1642 und 1608 cm⁻¹.

(IV) Acevaltratumjodhydrin (11) und Acevaltratumbromhydrin (13) wurden analog 3 bzw. 5 hergestellt. Die Substanzen kristallisierten jedoch nicht, obwohl sie dünnschichtchromatographisch einheitlich waren. $\lambda_{max} = 256 \text{ m}\mu$ (in MeOH).

(V) Acevaltratumrhodanohydrin (12) Verbindung 10 (6 g) wurden in 60 ml Eisessig, der 12 g NaOCOCH₃

enthielt, gelöst und mit einer Lösung von 4 g KSCN in 20 ml H₂O versetzt. Nach 3 Stunden Stehen bei 0-5° war alles 10 umgesetzt. Es wurde wie unter II) aufgearbeitet. Nach Umkristallisieren aus Äther/ Petroläther wurden 5·28 g 12, d. s. 77% d. Th., als weisse Nadeln vom F.P. = 97-98·5° erhalten. (C₂₅H₃₃O₁₀NS, M = 539·6. C Ber: C, 55·65; H, 6·16; N, 2·59; S, 5·94. C Gef: C, 55·91; H, 6·19; N, 2·45; S, 6·00%); UV: $\lambda_{max} = 256 \text{ m}\mu$; $\varepsilon = 17,315$; $\lambda_{min} = 222 \text{ m}\mu$; $\varepsilon = 2000$.

J. Herstellung der "Didrovaltratum-Hydrine" (18, 19 und 20)

Die Herstellung der 16-Hydrine 18, 19 und 20 erfolgte analog derjenigen von 3, 4 und 5.

Während 3, 4 und 5 jedoch leicht kristallisierten, blieben 18, 19 und 20 farblose Öle von honigartiger Konsistenz. Die Reinigung erfolgte durch Chromatographie am Al₂O₃/Al-Acetat-Säulen, analog der Reindarstellung von 1.

"Didrovaltratumjodhydrin" (18) $C_{22}H_{33}O_8J$. C Ber: C, 47.84; H, 601; J, 22.97. C Gef: C, 48.22; H, 5.90; J. 20.21%; Didrovaltratumrhodanohydrin (19) $C_{23}H_{33}O_8NS$. C Ber: C, 57.13; H, 6.90; N, 2.90; S, 6.63. C Gef: C, 57.69; H, 7.19; N, 2.89; S, 6.68%) Die Substanzen sind lichtempfindlich.

K. Herstellung von 21 "S-Didrovaltratumthioharnstoffhydrin"

Verbindung 16 (10 g) wurde in 100 ml Eisessig gelöst und mit einer Lösung von 9-12 g Thioharnstoff in 80 ml 40% iger AcOH versetzt. Nach 2 Stunden Stehen bei $+6^{\circ}$ wurde der Ansatz mit 180 ml Wasser verdünnt und mit ca. 200 ml Äther extrahiert. Der Ätherextrakt wurde dann einmal gegen 100 ml Wasser geschüttelt. Dieses Waschwasser wurde mit der AcOH Unterphase vereinigt, während die Ätherphase verworfen wurde. Die verdünnte AcOH Phase wurde mit NH₄OH unter Kühlung langsam auf pH = 8 eingestellt, wobei 21 als weisse Kristallmasse anfiel. Es wurde abgenutscht, gut mit H₂O gewaschen und im Exsikkator getrocknet. Ausbeute: 10-10 g = 86% d. Th., F.P. = 104–105°. 21 löst sich ausser in Äther, AcOEt und Alkohol gut in AcOH und verdünnten Mineralsäuren. (Ber: C, 55·18; H, 7·25; N, 6·00; S, 6·41. M, 500·62. Gef: C, 55·10; H, 7·31; N, 6·00; S, 6·42%; M, 500, durch Titration mit n/10 HCl in MeOH gegen "Mischindikator".) IR-Spektrum (KBr) Wellenzahlen (cm⁻¹): 3460 (tertiäres – OH), 3350 (--NH₂), 3260 (=-NH), 1750 und 1732 [CO (Ester)], 1672 (Enolätherdoppelbindung), 1620 (breite Bande!) (NH₂ + ==NH).

L. Herstellung der Methoxybromide (23 und 24)

Zu einer Lösung von 20 g 16 in 600 ml MeOH wurde unter Eiswasserkühlung so lange eine eingestellte benzolische Bromlösung (125.5 g $Br_2/1000$ ml Benzol) zufliessen gelassen, bis eine schwache Gelbfärbung auftrat. Der Überschuss an Br_2 wurde mit n-Thiosulfatlösung zurücktitriert. Insgesamt wurden 7.381 g Brom verbraucht. Die entfärbte Lösung wurde nach Verdünnen mit Wasser mit Benzol extrahiert. Nach Waschen der Benzollösung mit 2%iger NaHCO₃, Trocknen über MgSO₄ und Einengen im Vakuum wurden 19.7 g farbloses Öl erhalten, welches nach dem Dünnschichtchromatogramm nach "DC 14" aus 2 Subštanzen bestand.

Säulenchromatographische Trennung von 23 und 24. Aluminiumoxid ("neutral, Woelm"; 7.5 Kg) wurden in einem Gemisch aus 1.5 l. Aceton, 300 ml Glycerinmonoacetat und 30 ml Eisessig "inaktiviert". Die Säulenfüllung wurde dann mit n-Hexan gewaschen. 29 g eines Gemisches aus 23 und 24 wurden mit 30 ml n-Hexan verdünnt auf die Säule gegeben (Säulendurchmesser: 35 mm). Die Elution erfolgte mit n-Hexan; Tropfgeschwindigkeit 100 ml/15 Min., Temperatur 23°. Die Kontrolle der Fraktionen á 100 ml erfolgte mittels "DC 14". Aus den Fraktionen 5–9 wurden 5.55 g reines 23 erhalten. $[\alpha]_{D^2}^{D^2} = +2.56^{\circ}$ (MeOH); $n_D^{D^0} = 1.4763$. Aus den Fraktionen 13–21 wurden 7.75 g reines 24 erhalten. $[\alpha]_D^{D^2} = +47.92^{\circ}$ (MeOH); $n_D^{D^0} = 1.4790$. (C₂₃H₃₅O₉Br, M, 535.44. Ber: C, 14.92; CH₃O, 5.79. Gef: C, 14.60; CH₃O, 5.36%.)

Verbindungen 23 und 24 unterscheiden sich ausser durch die sehr unterschiedliche Rechtsdrehung auch noch sehr eindrucksvoll durch ihre NMR-Spektren insbesondere bezüglich der Signale der Methylenprotonen EE'.

		δ	-Werte bezogen	auf TMS $= 0$	
Proton	A	В	С	EE'	СН₃О
23	4·77 S	5·8 d (9)	4·70 d (6)	4·22 S	3·4 S
24	4·77 S	5·73 d (7)	4·72 d (6)	4-08 d (12)	3·34 S
		()	- (-)	4·44 d (12)	

TABELLE 7. δ-WERTE VON 23 UND 24 ZWISCHEN 3 UND 7 PPM, GEMESSEN BEI 60 MHz in CCl4 mit einem Varian A-60-Gerät*

* Auch diese Spektren verdanke ich Herrn R. Yernaux, Laboratoire de la Société Solvay et Cie, Brüssel.

M. Darstellung der "Desacetylverbindungen" (25 und 26)

Verbindung 16 (10 g) wurden in einem Gemisch aus 300 ml MeOH und 100 ml konzentrierter wässeriger NH₃-Lösung gelöst. Nach einstündigem Stehen bei 20° wurde die rotorange Lösung im Vakuum eingeengt, der Rückstand in wenig Methanol aufgenommen, verharzte Anteile mit etwas Äther gefällt und abfiltriert. Nach erneutem Einengen im Vakuum resultierten 3.7 g hellbraunes Öl. Dieses wurde an 600 g Aluminiumoxid (neutral, Woelm), welches, wie oben beschrieben, mit Eisessig, Glycerinmonoacetat und Aceton in n-Hexan inaktiviert war, chromatographiert. Es wurde mit n-Hexan eluiert und Fraktionen á 100 ml aufgefangen.

Aus den Fraktionen 32-34 wurden 0.48 g 26 erhalten; nach Umkristallisation aus Äther/Petroläther resultierten weisse Nadeln vom F.P. = 80° . (C₂₃H₄₀O₉ (26); M, 484.6. Ber: C, 61.97; H, 8.32. Gef: C, 61.96; H, 8.52%); IR-Spektrum: vgl. Fig. 19; NMR-Spektrum: vgl. Fig. 20.

Aus den Fraktionen 35–37 wurden 0.29 g 25 erhalten, welches nach Umkristallisieren aus Tetrachlorkohlenstoff/Hexan einen Schmelzpunkt von 49–50° hatte. IR-Spektrum: vgl. Fig. 17; NMR-Spektrum: vgl. Fig. 18.

LITERATUR

- ¹ 1. Mitteilung: P. W. Thies und S. Funke, Tetrahedron Letters 1155 (1966); 2. Mitteilung: P. W. Thies, *Ibid.* 1163 (1966).
- ² von der World Health Organization in Genf akzeptierter "non-proprietary name".
- ³ R. Hegenauer, Pharm. Helv. Acta 41, 577 (1966).
- ⁴ A. G. Anderson, Jr., W. F. Harrison, R. G. Anderson and A. G. Osborne, J. Am. Chem. Soc. 81, 1255 (1959).
- ⁵ D.P. 1.233.993
- ⁶ P. W. Thies, in Vorbereitung
- ⁷ C. G. Swain, J. Am. Chem. Soc. 74, 4108 (1952).
- ⁸ J. A. Pople, W. G. Schneider und H. J. Bernstein High Resolution Magnetic Resonance. McGraw-Hill, New York (1959).
- ⁹ R. M. Silverstein und G. C. Bassler, Spectrometric Identification of Organic Compounds. Wiley, New York
- ¹⁰ M. L. Heffernan und A. J. Jones, Austr. J. Chem. 19, (10), 1813 (1966).
- ¹¹ Fink, K. und R. M., Proc. Soc. Exp. Biol. Med. 70, 654 (1949).
- ¹² D.P. 1.191.515
- ¹³ L. J. Bellamy, Ultrarot-Spektrum und chem. Konstitution 2. Auflage; S.29 (1966).
- ¹⁴ M. Karplus, J. Chem. Phys. 30, 11 (1959); J. Am. Chem. Soc. 85, 2870 (1963).
- ¹⁵ R. U. Lemieux, R. K. Kullnig, H. J. Bernstein and W. G. Schneider, *Ibid.* 80, 6098 (1958).
- ¹⁶ D. H. R. Barton, W. J. Rosenfelder, A. J. Head und R. J. Williams, J. Chem. Soc. 2174 (1949); Ibid. 2459 und 453 (1952).
- ¹⁷ A. Rassat, C. W. Jefford, J. M. Lehn und B. Waegell, Tetrahedron Letters 233-243 (1964).
- ¹⁸ E. Mannetstätter, H. Gerlach und W. Poethke, Die Pharmazie 21, 321 (1966).
- ¹⁹ S. Sternhell, Rev. Pure and Appl. Chem. 14, 15 (1964).